Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An efficient synthesis of 2,3-diaryl (3H)-quinazolin-4-ones via imidoyl chlorides

Andrew Kalusa, Nicola Chessum, Keith Jones*

Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK

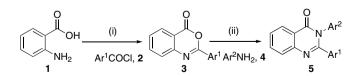
ARTICLE INFO

ABSTRACT

Article history: Received 5 June 2008 Revised 9 July 2008 Accepted 16 July 2008 Available online 22 July 2008

A practical and efficient three step synthetic route to 2,3-diaryl (3*H*)-quinazolin-4-ones has been developed. The key step involves microwave-assisted condensation of an imidoyl chloride with an aryl amine. This methodology affords the products cleanly and in high yields.

© 2008 Elsevier Ltd. All rights reserved.


etrahedro

The quinazolinone moiety is a widely researched scaffold in medicinal chemistry. The quinazolinone core is found in a range of compounds exhibiting a broad spectrum of biological effects. These include kinase inhibition,¹ anticancer,² antimalarial,^{3,4} diabetes and obesity.⁵

Over the years, the broad range of biological properties of 2,3disubstituted (3*H*)-quinazolin-4-ones has prompted considerable synthetic efforts. Although a number of synthetic methodologies have been reported, accessing 2,3-diaryl (3*H*)-quinazolin-4-ones continues to be problematic owing to the limited nucleophilicity of aromatic amines.⁶⁻¹²

As part of our research programme, we needed to synthesise a series of 2,3-diaryl (3*H*)-quinazolin-4-one derivatives. The most commonly employed method for the synthesis of compounds with this substitution pattern involves condensation of benzoxazinone **3** with an amine **4** at high temperature^{13,14} (Scheme 1).

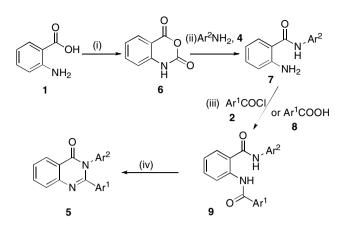
Benzoxazinones **3** were synthesised by the reaction of anthranilic acid **1** with an acyl chloride **2** followed by dehydration. Subsequent microwave heating of benzoxazinones **3** with an aromatic amine **4** in DMF at 150 °C afforded the 2,3-disubstituted (3*H*)-quinazolin-4-one **5** in low yield (Scheme 1). The results are summarised in Table 1. The low yields obtained via this route were ascribed to poor nucleophilicity of the aryl amines.

Scheme 1. Reagents and conditions: (i) pyridine, rt or pyridine and then acetic anhydride, reflux, 40–60% (ii) DMF, 150 °C, microwave.

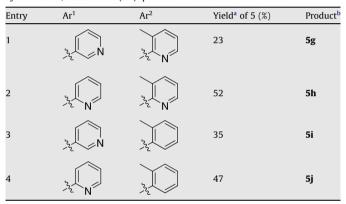
Entry	Ar ¹	Ar ²	Yield ^a of 5 (%)	Product ^b
1	- Second Andrews	32 N	4	5a
2	- Second	N II N	4	5b
3	2 N	-32 N	7	5c
4	3 N	3	14	5d
5	3 N	3	12	5e
6	2	22 N	10	5f

^a Isolated yield after flash chromatography and/or prep TLC.

^b All compounds were characterised by ¹H NMR, ¹³C NMR and HRMS.


We also explored methodologies employing the diamide **9** as an intermediate following studies which were recently reported.^{15,16} In this procedure, 2,3-dialkyl (3*H*)-quinazolin-4-ones were prepared by microwave-assisted cyclocondensation of diamides.

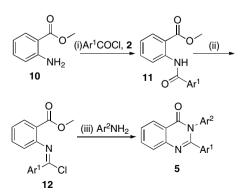
A series of diamides **9** was prepared by condensation of the appropriate amine with isatoic anhydride **6** followed by coupling of the resulting amine **7** with an acyl chloride **2** or carboxylic acid **8**. The isatoic anhydride **6** was prepared by reaction of anthranilic acid **1** with triphosgene in good yield.¹⁷ The diamides **9** were converted to the corresponding 2,3-diaryl (3*H*)-quinazolin-4-ones by microwave heating in pyridine at 200 °C for 2 h (Scheme 2). The yields were low to moderate (Table 2).


^{*} Corresponding author. Tel.: +44 208 722 4334; fax: +44 208 722 4047. *E-mail address*: keith.jones@icr.ac.uk (K. Jones).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.07.091

Scheme 2. Reagents and conditions: (i) triphosgene, THF, 0 °C to rt, 89%; (ii) dimethylacetamide, 110 °C, DMAP; (iii) triethylamine, CHCl₃, 40 °C or HATU, DIPEA, DMF, rt; (iv) pyridine, microwave, 200 °C, 2 h.

Table 2 Synthesis of 2,3-substituted (3H)-quinazolin-4-ones 5 from diamide 9



Isolated yield after flash chromatography.

^b All compounds were characterised by ¹H NMR, ¹³C NMR and HRMS.

Although the second route involving dehydration of diamide 9 gave access to several 2,3-diaryl (3H)-quinazolin-4-ones 5, a more efficient and general route was sought. We were attracted by recent work reported by a group at Albany Molecular Research.¹⁸ They described a highly stereoselective synthesis of 2.3-disubstituted (3H)-quinazolin-4-ones involving reaction of an imidoyl chloride with a chiral amino acid. We envisaged that we could synthesise 2,3-diaryl (3H)-quinazolin-4-one derivatives by reacting an imidoyl chloride with aryl amines and subsequent ring closure.

The imidoyl chloride 12 was synthesised by acylation of methyl anthranilate 10 with an acyl chloride 2 under standard condi-

Scheme 3. Reagents and conditions: (i) CHCl₃, triethylamine, 40 °C, (ii) thionyl chloride, reflux, (iii) pyridine, microwave, 200 °C.

tions.¹⁹ The resulting amide **11** was subsequently treated with thionyl chloride to afford imidoyl chloride **12** in quantitative yield. The imidoyl chloride 12 can be stored under argon and remained stable for several days. The imidoyl chloride 12 was condensed with a series of amines 4 in pyridine under microwave heating at 200 °C to afford the desired 2,3-diaryl (3H)-quinazolin-4-ones (Scheme 3). The results are summarised in Table 3.

Table 3	
Synthesis of 2,3-diaryl quinazolin-4-ones 5 from imidoyl chloride 12	

Entry	Ar ¹	Ar ²	Yield ^a of 5 (%)	Product ^b
1	Store N	-32 N	85	5c
2	3. N	2	87	5d
3	-32 N	22	83	5e
4	N N	22 N	88	5g
5	کر	2	85	5i
6	Star N	3. Br	79	5k
7	N N	3	77	51
8	N N	OMe Come	68	5m
9	Store N	OMe	74	5n
10	22 N	-22 N	87	50
11	22 N	No. Star	64	5p
12	2	-3- N	66	5q
13	3 N	× N O	51	5r
14	22 N	2	80	5s
15	N N	Br N	40	5t
16	N.	nBu	75	5v

^a Isolated yield after flash chromatography.
 ^b Characterised by ¹H NMR, ¹³C NMR and HRMS.

As shown in Table 3, both aromatic and heteroaromatic amines underwent cyclocondensation with imidoyl chlorides 12 in good to excellent yields. Anilines carrying electron-withdrawing groups gave good yields (entry 6). Weakly nucleophilic aminopyridines also reacted successfully (entry 10) even when sterically hindered (entry 4). 5-Bromo-2-aminopyridine (Table 3, entry 15) gave only a moderate yield, possibly due to the presence of an electron-withdrawing bromine in the 5 position. The presence of a methyl group ortho to the amino group did not affect cyclocondensation (Table 3, entries 4 and 5). In contrast to the microwave reaction, conventional heating of the imidoyl chloride 12 with an aromatic amine under reflux for 24 h gave the corresponding 2,3-diaryl (3H)-quinazolin-4-ones in low yields along with side products. This new method offers a considerable improvement in yields in comparison to the previous two routes discussed. For example, compounds 5c and **5e** were obtained in 85% and 83% yields, respectively, from the corresponding imidovl chloride. Using the previously reported routes, yields of only 7% and 12%, respectively, were obtained.

In summary, we have developed a practical and efficient route to 2,3-diaryl (3*H*)-quinazolin-4-ones. The key step is the cyclocondensation of imidoyl chloride **12** with an aryl amine using microwave conditions.¹⁹ This procedure was used to synthesise a series of 2,3-diaryl substituted (3*H*)-quinazolin-4-ones for biological screening in our research programme.

Acknowledgements

This work was supported by Cancer Research UK [CRUK] programme grant number CC309/A8274. We also thank Dr. Amin Mirza and Mr Meirion Richards for their assistance with NMR and mass spectrometry.

References and notes

- Fowler, K. W.; Huang, D.; Kesicki, E. A.; Ooi, H. C.; Oliver, A. R.; Ruan, F.; Treiberg, J.; (Icos Corporation, USA). Application: WO2005113556, 2005-US16778 2005; p 247. *Chem. Abstr.*2006, 144, 22759.
- Jiang, J. B.; Hesson, D. P.; Dusak, B. A.; Dexter, D. L.; Kang, G. J.; Hamel, E. J. Med. Chem. 1990, 33, 1721–1728.
- Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.-S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. J. Med. Chem. 1999, 42, 3163–3166.

- 4. Takeuchi, Y.; Koike, M.; Azuma, K.; Nishioka, H.; Abe, H.; Kim, H.-S.; Wataya, Y.; Harayama, T. *Chem. Pharm.* **2001**, *49*, 721–725.
- Rudolph, J.; Esler, W. P.; O'Connor, S.; Coish, P. D. G.; Wickens, P. L.; Brands, M.; Bierer, D. E.; Bloomquist, B. T.; Bondar, G.; Chen, L.; Chuang, C.-Y.; Claus, T. H.; Fathi, Z.; Fu, W.; Khire, U. R.; Kristie, J. A.; Liu, X.-G.; Lowe, D. B.; McClure, A. C.; Michels, M.; Ortiz, A. A.; Ramsden, P. D.; Schoenleber, R. W.; Shelekhin, T. E.; Vakalopoulos, A.; Tang, W.; Wang, L.; Yi, L.; Gardell, S. J.; Livingston, J. N.; Sweet, L. J.; Bullock, W. H. J. Med. Chem. 2007, 50, 5202–5216.
- Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H. S.; Wataya, Y.; Harayama, T. *Tetrahedron* 2001, *57*, 1213–1218.
- 7. Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773-2777.
- 8. Wang, L.; Xia, J.; Qin, F.; Qian, C.; Sun, J. Synthesis 2003.
- Xue, S.; McKenna, J.; Shieh, W.-C.; Repic, O. J. Org. Chem. 2004, 69, 6474– 6477.
- Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Baghbanzadeh, M. *Tetrahedron Lett.* 2005, 46, 7051–7053.
- 11. Errede, L. A. J. Org. Chem. 1976, 41, 1763-1765.
- 12. Komaraiah, A.; Šailu, B.; Reddy, P. S. N. Synth. Commun. 2008, 38, 114– 121.
- Shcherbakova, I.; Balandrin, M. F.; Fox, J.; Ghatak, A.; Heaton, W. L.; Conklin, R. L. Bioorg. Med. Chem. Lett. 2005, 15, 1557–1560.
- Wang, S.; Ryder, H.; Pretswell, I.; Depledge, P.; Milton, J.; Hancox, T. C.; Dale, I.; Dangerfield, W.; Charlton, P.; Faint, R.; Dodd, R.; Hassan, S. Bioorg. Med. Chem. Lett. 2002, 12, 571–574.
- Liu, J.-F.; Lee, J.; Dalton, A. M.; Bi, G.; Yu, L.; Baldino, C. M.; McElory, E.; Brown, M. Tetrahedron Lett. 2005, 46, 1241–1244.
- Kostakis, I. K.; Elomri, A.; Seguin, E.; Iannelli, M.; Besson, T. *Tetrahedron Lett.* 2007, 48, 6609–6613.
- Coppola, Gary M. Synthesis 1980, 505–536.
 Zhichkin, P.; Kesicki, E.; Treiberg, J.; Bourdon, L.; Ronsheim, M.; Ooi, H. C.;
- White, S.; Judkins, A.; Fairfax, D. Org. Lett. **2007**, 9, 1415–1418.
- 19. General procedure for synthesis of imidoyl chloride 12: Thionyl chloride (5 mL) was added to methyl 2-(picolinamido)benzoate (0.36 g, 1.4 mmol), and the resulting mixture was heated at 70 °C for 24 h. The excess thionyl chloride was removed under reduced pressure, and the crude product was dried under high vacuum at 70 °C for 30 min to afford a pale yellow solid in quantitative yield. General procedure for synthesis of 2,3-diarylsubstituted quinazolin-4-ones: Pyridine (1.5 mL) was added to imidoyl chloride 12 (0.328 g, 1.19 mmol) and p-toluidine (0.191 g, 1.78 mmol), and the resulting mixture was heated at 200 °C in a Biotage Initiator Sixty[™] microwave for 30 min. The excess pyridine was removed under reduced pressure, and the residue was purified by flash chromatography (silica; DCM-ether; 1:1) to afford 2-(pyridin-2-yl)-3-ptolylquinazolin-4(3H)-one **5e** (0.31 g, 83%), as a white solid: mp 206–207 °C; δ_H (500 MHz; CDCl₃); 2.31 (3H, s, methyl C-H), 7.07–7.11 (4H, m, aryl C-H), 7.21 (1H, dd, *J* = 7.8, 4.8 Hz, aryl C–H), 7.52 (1H, d, *J* = 7.8 Hz, aryl C–H), 7.59 (1H, t, J = 7.8 Hz, aryl C-H), 7.67 (1H, m, aryl C-H), 7.85 (1H, m, aryl C-H), 7.90 (1H, d, *J* = 7.9 Hz, arvl C–H), 8.41 (1H, d, *J* = 7.9 Hz, arvl C–H), 8.46 (1H, d, J = 4.8 Hz, aryl C–H); δ_C (125 MHz; CDCl₃) 21.1(CH₃), 121.5, 123.8, 124.4, 127.3, 127.7, 127.8, 128.7, 129.5, 134.6, 134.7, 136.5, 138.3, 147.1, 148.8, 153.1, 153.4, 162.1 (C=O); LCMS (ESI): $R_t = 4.14 \text{ min: } m/z \text{ 314.12 ([M+H]^+, 100\%); HRMS}$ found 314.1278, C20H16N3O [M+H]+ requires 314.1288.